Print version

CEE/EHS 597B

Meeting #2: Treatment for Small Water Systems

Dave Reckhow

CEE/EHS 597B

David Reckhow

Purposes for Water Treatment

- Disinfection
- Removal of Turbidity
- Removal of Color, and Tastes & Odors
- Removal of Iron & Manganese
- Hardness removal
- Protection from Toxic Organics and Inorganics

Drinking Water Treatment Processes

- Gas Transfer (stripping)
- Oxidation
- Coagulation & Flocculation
- Sedimentation or Flotation
- Softening
- Adsorption
- Disinfection

David Reckhow CEE/EHS 597B

Source Waters

- Groundwaters
 - constant quality
- Rivers
 - variable quality
 - storm events, runoff
 - increases in turbidity, pathogens, coliforms
 - · Wastewater inputs
 - Agricultural runoff
 - · Accidental spills

- Reservoirs & lakes
 - less variation than rivers
 - seasonal blooms of alae in nutrient rich reservoirs
 - oxygen can be depleted from bottom; causing Fe/Mn problems
 - reservoir turnover in fall & spring

Log Removal

- Meaning of "Log Removal or Inactivation"
 - Removal: remove organisms from the water
 - Inactivation: make organisms non-infectious by use of disinfection
 - Let N₀ be the number concentration of microorganisms in raw water
 - Let N be the number concentration of microorganisms after treatment
 - N/N₀ = fraction remaining after treatment
 - $100 \times (N_0 N)/N_0 = percent removal (or inactivation)$
 - Log (N_0/N) = the log removal (or inactivation)
 - Relation between % removal and log removal:

% Removal	Log Removal	N, if N ₀ = 10,000/L
90	1	1000
99	2	100
99.9	3	10
99.99	4	1
	CEE/EHS 597B	•

David Reckhow

SWTR (cont.)

• Requirements for Filtered Supplies

	Log ₁₀ Removal Allowed By Filtration		Remaining Log ₁₀ Inactivation by		
Type of			Disinfection		
Filtration	Giardia	Viruses	Giardia	Viruses	
Conven-	2.5	2.0	0.5	2.0	
tional					
Direct	2.0	1.0	1.0	3.0	

- Requirements for Unfiltered Supplies
 - Meet source water quality criteria
 - Provide all Pathogen removal by Disinfection
 - 3 log Giardia, 4 log viruses

David Reckhow

CEE/EHS 597B

The TT approach, rather than MCL Requires a certain CT

Treatment vs Sources

- Surface water
 - Major water quality concerns
 - Pathogens
 - Turbidity
 - Color & TOC
 - Taste & odor
 - Typical treatment
 - "conventional" not coagulation-filtration uncommon
 - · Some use advanced treatment

- Groundwater
 - Major water quality concerns
 - Fe/Mn
 - Hardness
 - Arsenic, perchlorate
 - · VOCs & pesticides
 - Typical treatment
 - · Disinfection only
 - Softening
 - Aeration
 - Pressure filtration

David Reckhow

CEE/EHS 597B

Simple Groundwater systems

- "Groundwater Treatment Process"
 - From RCAP reading, pg 10-11

Groundwater Treatment

- More realistically, there are many options or needs:
 - a. Fe/Mn removal
 - b. Precip. Softening
 - c. Ion exchange
 - d. Simple disinfection

From: Water and Wastewater Technology by Hammer and Hammer, 6th edition (2008) H&H, fig 7-25, pg.250

David Reckhow

Surface Water

• Again from RCAP, pg/ 14-15

Conventional Treatment

- Coagulation & solids separation
 - rapid mix, flocculation, settling, filtration
- Disinfection
 - including clearwell for contact time

• Most common for surface water

Dissolved Air Flotation (DAF)

 uses very small air bubbles to cause "floc" to float, instead of relying on gravity to make them sink

Direct Filtration

• No settling or flotation

David Reckhow

- goes "directly" from flocculation to filtration
- works well for some low color, low turbidity waters

Disinfection of PWS

- One of the greatest achievements in public health during the 20th century
 - US Centers for Disease Control (CDC)
- One of the greatest engineering feats of the 20th century
 - National Academy of Engineering

Disinfection

- · Kill or inactivate pathogens
 - Bacteria, viruses protozoa
- Methods
 - Heat: boil water
 - Expose to UV light
 Small scale, for emergencies
 - Add Chemical Oxidants
 Slowly becoming more common
 - Chlorine (Cl₂, HOCl or OCl⁻)
 - Chloramines (NH₂Cl or NHCl₂)
 - Ozone (O₃)
 - Chlorine Dioxide (ClO₂)

By far the most common

Primary purpose for drinking water treatment

David Reckhow CEE/EHS 597B 21

Application Points

- Primary Disinfection
 - removal or inactivation of pathogens by "treatment technique" or TT approach
 - CT concept
 - done in the treatment plant, sometimes as a first step
 - can be: free chlorine, ozone, chlorine dioxide or UV light
- Secondary Disinfection
 - Added as the last step just prior to entry into distribution system
 - intended to maintain a residual of disinfectant throughout the distribution system
 - Minimize growth on pipe walls, some protection against recontamination, or maybe just a "sentinel"
 - usually free or combined chlorine, sometimes chlorine dioxide

Treatment vs Sources

Crossover is

- Surface water
 - Major water quality concerns
 - Pathogens
 - Turbidity
 - Color & TOC
 - · Taste & odor
 - Typical treatment
 - "conventional" not coagulation-filtration uncommon
 - Some use advanced treatment

- Major water quality concerns
 - Fe/Mn
 - Hardness
 - Arsenic, perchlorate
 - · VOCs & pesticides

Typical treatment

- · Disinfection only
- Softening
- Aeration
- Pressure filtration

David Reckhow CEE/EHS 597B

Forms of Chlorine applied to water

- Chlorine gas
 - Cl₂ Traditional method
- Sodium Hypochlorite liquid (Hypo)
 - NaOCI

Becoming more common

- Calcium Hypochlorite solid
 - Ca(OCI)₂
- · Other forms
 - Organic-N based compounds and resins

Question

- At pH 8.5, the percent of the total free chlorine that is in the most effective form is:
 - A. 0%
 - B. 9%
 - C. 27%
 - D. 50%
 - E. 73%
 - F. 91%
 - G. 100%

David Reckhow

CEE/EHS 597B

27

28

Chlorine demand I

- Chlorine reacts quickly with substances in water so that the effective residual is always less than the dose
- Chlorine residual = chlorine dose chlorine demand

- Chlorine demand is usually measured for a particular water and it may depend on the contact time and dose
 - · It may be estimated from known water quality

Chick-Watson Law

The extent of inactivation is a function of the specific lethality
 (λ) of the disinfectant-organism couple, the disinfectant
 concentration (C), and the time of contact (t) with the
 disinfectant.

$$\ln\left(\frac{N}{N_0}\right) = -\lambda Ct$$

and
$$k = \lambda C$$
 $\{Ct\}_{x \log} = 2.3x/\lambda$

David Reckhow CEE/EHS 597B

Chick-Watson II

- Use of Ct values for various "log removals" is general practice
 - Here is how Ct corresponds to specific lethality of Chick's
 Law (for n=1)
 Log
 N if N =
 Ct

%	Log	$N, if N_0 =$	Ct
Removal	Removal	10,000/L	
90	1	1000	2.3/λ
99	2	100	4.6/λ
99.9	3	10	6.9/λ
99.99	4	1	9.2/λ

Model is not always accurate, but it is usually a good first approximation

Specific Lethality (λ) at 20°C

- General hierarchy
 - Disinfectants: O₃>ClO₂>HOCl>OCl⁻>NHCl₂>NH₂Cl
 - Organisms: bacteria>viruses>protozoa

Units: L/mg-min

Some may change with pH, dose; all are affected by temperature

Disinfectant E. coli Poliovirus I Entamoeba histolytica Cysts 2300 920 O_3 3.1 HOC1 120 4.6 0.23 ClO_2 16 2.4 OC1 5.0 0.44 NHC₁₂ 0.84 0.00092NH₂Cl 0.12 0.014

David Reckhow

Chick-Watson Law: HOCl & Giardia Direct plot Specific Lethality = 0.23 1 mg/L HOCI 2 mg/L HOCI 8.0 4 mg/L HOCI 1 log removal 2 log removal 0.6 0.4 0.2 1 log 2 logs 15 20 25 David Reckhow Time (min)

Ctv	ait	ies to	r <i>Gia</i>	raia i	ambi	на су	STS
&H, Table 7-4	. ng.245				T		
	, 68				WATER TEMPERATU		
	РΗ	Log Inactivation	0.5°C [(mg/l) · min]	5°C [(mg/l) · min]	10°C [(mg/l) · min]	I5°C [(mg/l) · min]	20°C [(mg/l) · m
Free							
chlorine ^a	6	0.5	25	18	13	9	7
	6	1.0	49	35	26	18	13
	7	0.5	35	25	19	13	9
	7	1.0	70	50	37	25	18
	8	0.5	51	36	27	18	14
	8	1.0	101	72	54	36	27
Preformed							
chloramine	6-9	0.5	640	370	310	250	190
	6-9	1.0	1300	740	620	500	370
Chloride							
dioxide	6–9	0.5	10	4.3	4.0	3.2	2.5
	6–9	1.0	21	8.7	7.7	6.3	5.0
Ozone	6-9	0.5	0.48	0.32	0.23	0.16	0.1
	6-9	1.0	0.97	0.63	0.48	0.32	0.2

Ct values for Viruses

For Viruses at various temperatures
 pH 6-9

H&H Table 7-5, pg 245

	WATER TEMPERATURE						
	Log Inactivation	0.5°C [(mg/l) · min]	5°C [(mg/l) · min]	10°C [(mg/l) · min]	15°C [(mg/l) · min]	20°C [(mg/l) · min]	
Free	2.0	6	4	3	2	1	
chlorine	3.0	. 9	6	4	3	2	
	4.0	12	8	6	4	3	
Preformed	2.0	1200	860	640	430	320	
chloramine	3.0	2100	1400	1100	710	530	
Chlorine	2.0	8.4	5.6	4.2	2.8	2.1	
dioxide	3.0	25.6	17.1	12.8	8.6	6.4	
Ozone	2.0	0.9	0.6	0.5	0.3	0.2	
	3.0	1.4	0.9	0.8	0.5	0.4	

Source: Adapted from Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources. U.S. Environmental Protection Agency.

Cl₂ gas: larger installations

CEE/EHS 597B

- 1 ton cylinders
 - With small (150 lb) vertical tanks in background
- Requires separate sealed room or bldg.

David Reckhow

Hypochlorite Dosing • Positive displacement pump

- Need chlorine resistant materials

Raw Water

- Reservoirs &
- Transmission Mains

David Reckhow

Clearwell

David Reckhow 9 Sept 06 CEE/EHS 597B

49

Clearwell

David Reckhow 9 Sept 06 CEE/EHS 597B

Clearwell

David Reckhow 9 Sept 06 51

Clearwell

David Reckhow 9 Sept 06

Clearwell

David Reckhow 29 Sept 06

Clearwell

• From the plant site

David Reckhow 29 Sept 06

• Dropping a panel into position Clea • Dropping a panel into position CEE/8HS 597B

Clearwell or Ground Storage

CEE/EHS 597B

• Multi-purpose

David Reckhow 29 Sept 06

- Chlorine contact tank for achieving "Ct"
 - · Giardia controls
 - 3 log Giardia is more restrictive than 4 log virus when using chlorine
 - $-\,$ 2.5 log credit given for Giardia (clarification + filtration), leaving 0.5 log for Ct
 - Northampton has decided to see 1.0 log for Ct
- Buffering system flows
- Fire Flow
- Backwash Storage

End of Class #2

• To next Lecture